These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of reactive oxygen species generation attenuates TLR4-mediated proinflammatory and proliferative phenotype of vascular smooth muscle cells.
    Author: Pi Y, Zhang LL, Li BH, Guo L, Cao XJ, Gao CY, Li JC.
    Journal: Lab Invest; 2013 Aug; 93(8):880-7. PubMed ID: 23774581.
    Abstract:
    Reactive oxygen species (ROS) are associated with inflammation and vasculature dysfunction. This study aimed to investigate the potential role of the ROS on vascular Toll-like receptor 4 (TLR4)-mediated proinflammatory and proliferative phenotype of vascular smooth muscle cells (VSMCs). A wire-induced carotid injury model was used in male TLR4-deficient (TLR4(-/-)) and wild-type C57BL/6J mice to induce neointima formation. In the presence or absence of the ROS scavenger apocynin for 14 days, increased TLR4 and proinflammatory cytokines were observed in wire injury-induced carotid neointima and in platelet-derived growth factor-BB (PDGF-BB)-stimulated VSMCs. The TLR4(-/-) protected the injured carotid from neointimal formation and impaired the cellular proliferation and migration in response to PDGF-BB. Apocynin attenuated intimal hyperplasia. Pre-treatment with apocynin significantly inhibited intracellular ROS generation, accompanied by a significant suppression of TLR4 and proinflammatory cytokines expression, and VSMC proliferation and migration. However, the results were not obvious in TLR4(-/-) condition. These findings highlight the importance of ROS inhibition in TLR4-mediated proinflammatory and proliferative phenotype of VSMCs, and suggest ROS as an essential therapeutic target for TLR4-associated vascular inflammation and vascular diseases.
    [Abstract] [Full Text] [Related] [New Search]