These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Healing ligaments have shorter lifetime and greater strain rate during fatigue than creep at functional stresses. Author: Thornton GM, Bailey SJ. Journal: J Biomech Eng; 2013 Sep; 135(9):91004. PubMed ID: 23775365. Abstract: Healing ligaments have compromised strength, which makes them susceptible to damage during daily activities at normal functional stresses. Daily activities expose ligaments to cyclic (fatigue) and static (creep) loading. A gap injury was created in the midsubstance of both hindlimb medial collateral ligaments of 40 female 1-year-old New Zealand White rabbits. After a 14-week healing interval, medial collateral ligament gap scars were exposed to long-term fatigue and creep loading over a range of functional force/stress levels. Lifetime and strain behavior were compared during fatigue and creep. The contribution of time-dependent mechanisms to fatigue lifetime was modeled using creep data. Fatigue-loaded healing ligaments had shorter lifetime, greater steady-state strain rate and greater increase in strain at 0.8 h than creep-loaded healing ligaments. The actual fatigue lifetime was less than the predicted fatigue lifetime which was derived from time-dependent damage alone, indicating an important role for cycle-dependent damage mechanisms in healing ligaments during fatigue loading. Cyclic loading decreased lifetime and increased strain rate and strain prior to rupture compared to static loading in healing ligaments. These findings suggest that, after a ligament injury, more care should be taken when exercises result in cyclic loading rather than static loading of the healing ligament even at functional stresses.[Abstract] [Full Text] [Related] [New Search]