These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The driving force of alpha-synuclein insertion and amyloid channel formation in the plasma membrane of neural cells: key role of ganglioside- and cholesterol-binding domains. Author: Fantini J, Yahi N. Journal: Adv Exp Med Biol; 2013; 991():15-26. PubMed ID: 23775688. Abstract: Alpha-synuclein is an amyloidogenic protein expressed in brain and involved in Parkinson's disease. It is an intrinsically disordered protein that folds into an alpha-helix rich structure upon binding to membrane lipids. Helical alpha-synuclein can penetrate the membrane and form oligomeric ion channels, thereby eliciting important perturbations of calcium fluxes. The study of alpha-synuclein/lipid interactions had shed some light on the molecular mechanisms controlling the targeting and functional insertion of alpha-synuclein in neural membranes. The protein first interacts with a cell surface glycosphingolipid (ganglioside GM3 in astrocytes or GM1 in neurons). This induces the folding of an alpha-helical domain containing a tilted peptide (67-78) that displays a high affinity for cholesterol. The driving force of the insertion process is the formation of a transient OH-Pi hydrogen bond between the ganglioside and the aromatic ring of the alpha-synuclein residue Tyr-39. The higher polarity of Tyr-39 vs. the lipid bilayer forces the protein to cross the membrane, allowing the tilted peptide to reach cholesterol. The tilted geometry of the cholesterol/alpha-synuclein complex facilitates the formation of an oligomeric channel. Interestingly, this functional cooperation between glycosphingolipids and cholesterol presents a striking analogy with virus fusion mechanisms.[Abstract] [Full Text] [Related] [New Search]