These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo targeting of human DC-SIGN drastically enhances CD8⁺ T-cell-mediated protective immunity. Author: Hesse C, Ginter W, Förg T, Mayer CT, Baru AM, Arnold-Schrauf C, Unger WW, Kalay H, van Kooyk Y, Berod L, Sparwasser T. Journal: Eur J Immunol; 2013 Oct; 43(10):2543-53. PubMed ID: 23784881. Abstract: Vaccination is one of the oldest yet still most effective methods to prevent infectious diseases. However, eradication of intracellular pathogens and treatment of certain diseases like cancer requiring efficient cytotoxic immune responses remain a medical challenge. In mice, a successful approach to induce strong cytotoxic CD8⁺ T-cell (CTL) reactions is to target antigens to DCs using specific antibodies against surface receptors in combination with adjuvants. A major drawback for translating this strategy into one for the clinic is the lack of analogous targets in human DCs. DC-SIGN (DC-specific-ICAM3-grabbing-nonintegrin/CD209) is a C-type lectin receptor with potent endocytic capacity and a highly restricted expression on human immature DCs. Therefore, DC-SIGN represents an ideal candidate for DC targeting. Using transgenic mice that express human DC-SIGN under the control of the murine CD11c promoter (hSIGN mice), we explored the efficacy of anti-DC-SIGN antibodies to target antigens to DCs and induce protective immune responses in vivo. We show that anti-DC-SIGN antibodies conjugated to OVA induced strong and persistent antigen-specific CD4⁺ and CD8⁺ T-cell responses, which efficiently protected from infection with OVA-expressing Listeria monocytogenes. Thus, we propose DC targeting via DC-SIGN as a promising strategy for novel vaccination protocols against intracellular pathogens.[Abstract] [Full Text] [Related] [New Search]