These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Improving T2 -weighted imaging at high field through the use of kT -points. Author: Eggenschwiler F, O'Brien KR, Gruetter R, Marques JP. Journal: Magn Reson Med; 2014 Apr; 71(4):1478-88. PubMed ID: 23788025. Abstract: PURPOSE: At high magnetic field strengths (B(0) ≥ 3 T), the shorter radiofrequency wavelength produces an inhomogeneous distribution of the transmit magnetic field. This can lead to variable contrast across the brain which is particularly pronounced in T(2) -weighted imaging that requires multiple radiofrequency pulses. To obtain T(2) -weighted images with uniform contrast throughout the whole brain at 7 T, short (2-3 ms) 3D tailored radiofrequency pulses (kT -points) were integrated into a 3D variable flip angle turbo spin echo sequence. METHODS: The excitation and refocusing "hard" pulses of a variable flip angle turbo spin echo sequence were replaced with kT -point pulses. Spatially resolved extended phase graph simulations and in vivo acquisitions at 7 T, utilizing both single channel and parallel-transmit systems, were used to test different kT -point configurations. RESULTS: Simulations indicated that an extended optimized k-space trajectory ensured a more homogeneous signal throughout images. In vivo experiments showed that high quality T(2) -weighted brain images with uniform signal and contrast were obtained at 7 T by using the proposed methodology. CONCLUSION: This work demonstrates that T(2) -weighted images devoid of artifacts resulting from B(1)(+) inhomogeneity can be obtained at high field through the optimization of extended kT -point pulses.[Abstract] [Full Text] [Related] [New Search]