These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A highly oxidizing and isolable oxoruthenium(V) complex [Ru(V)(N4O)(O)]2+: electronic structure, redox properties, and oxidation reactions investigated by DFT calculations. Author: Guan X, Chan SL, Che CM. Journal: Chem Asian J; 2013 Sep; 8(9):2046-56. PubMed ID: 23788366. Abstract: The electronic structure and redox properties of the highly oxidizing, isolable Ru(V)=O complex [Ru(V)(N4O)(O)](2+), its oxidation reactions with saturated alkanes (cyclohexane and methane) and inorganic substrates (hydrochloric acid and water), and its intermolecular coupling reaction have been examined by DFT calculations. The oxidation reactions with cyclohexane and methane proceed through hydrogen atom transfer in a transition state with a calculated free energy barrier of 10.8 and 23.8 kcal mol(-1), respectively. The overall free energy activation barrier (ΔG(≠)=25.5 kcal mol(-1)) of oxidation of hydrochloric acid can be decomposed into two parts: the formation of [Ru(III)(N4O)(HOCl)](2+) (ΔG=15.0 kcal mol(-1)) and the substitution of HOCl by a water molecule (ΔG(≠)=10.5 kcal mol(-1)). For water oxidation, nucleophilic attack on Ru(V)=O by water, leading to O-O bond formation, has a free energy barrier of 24.0 kcal mol(-1), the major component of which comes from the cleavage of the H-OH bond of water. Intermolecular self-coupling of two molecules of [Ru(V)(N4O)(O)](2+) leads to the [(N4O)Ru(IV)-O2-Ru(III)(N4O)](4+) complex with a calculated free energy barrier of 12.0 kcal mol(-1).[Abstract] [Full Text] [Related] [New Search]