These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nuclear relaxation studies on human methemoglobin. Observation of cooperativity and alkaline Bohr effect with inositol hexaphosphate. Author: Gupta RK, Mildvan AS. Journal: J Biol Chem; 1975 Jan 10; 250(1):246-53. PubMed ID: 237888. Abstract: Ehanced spin-lattice relaxation (1/t1) of water protons induced by the heme iron of human aquomethemoglobin is exchanged-limited (koff = 1.4 times 10-4 per s at 30 degrees, H+ =7.5 Cal per mol) as indicated by the temperature and frequencey dependencies. A comparison of deuteron and proton relaxation rates revealed an order of magnitude primary isotope effect and a small inverse secondary isotope effect on the escape rate of protons from the heme iron into bulk water establishing the exchange of protons and not the exchange of the entire water molecule to be the chemical mechanism of the entire water molecule to be the chemical mechanism of the exchange process. With fluoromethemoglobin, the relaxation rate is in the fast exchange region. The results can be understood in terms of a water molecule interacting with the heme iron at an iron to proton distance less than 3.4 A in aquomethemoglobin and a single proton at a distance of 4.11 A assignable to the NH proton of the distal histidine imidazole group in fluoromethemoglobin. The relaxation rates are pH-dependent and normal titrations with Hill coefficients n = 1 are observed. The pKa is less than or equal to 6. 7 with aquomethemoglobin and 8.5 with fluoromethemoglobin at 30 degrees C. The binding of inositol hexaphosphate in stoichiometric amounts has no significant effect on the magnetic susceptibility of solutions of aquomethemoglobin and fluoromethemoglobin, but in the former case it increases koff to 3.8 times 10-4 per s by lowering the H+ barrier to 6.8 Cal per mol. In fluoromethemoglobin, inositol hexaphosphate decreases the iron to distal histidine NH distance by 0.17 A and the electron relaxation time taus by 10% as determined by the frequency dependence of 1/T1. In the aquomethemoglobin system, inositol hexaphosphate induces a Bohr effect, raising the pKa of the ionization responsible for the 1/T1 titration to 7.2, and induces cooperativity in the pH titration with a Hill coeffocoemt n = 2.8 plus or minus 0.1. With fluoromethemoglobin, the normal pH titration curve is unaffected by inositol hexaphosphate (n approximately equal to 1). Further, relaxivity titrations with varying amounts of azide and fluoride near neutral pH show normal behavior (n = 1) with and without inositol hexaphosphate. These results indicated that inositol hexaphosphate alters the quaternary structure of methemoglobin to the deoxy conformation without causing a change in the spin state of the heme iron...[Abstract] [Full Text] [Related] [New Search]