These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Different motor tasks impact differently on cognitive performance of older persons during dual task tests. Author: Simoni D, Rubbieri G, Baccini M, Rinaldi L, Becheri D, Forconi T, Mossello E, Zanieri S, Marchionni N, Di Bari M. Journal: Clin Biomech (Bristol); 2013 Jul; 28(6):692-6. PubMed ID: 23791081. Abstract: BACKGROUND: Dual task paradigm states that the introduction of a second task during a cognitive or motor performance results in a decreased performance in either task. Treadmill walk, often used in clinical applications of dual task testing, has never been compared to overground walk, to ascertain its susceptibility to interference from a second task. We compared the effects of overground and treadmill gait on dual task performance. METHODS: Gait kinematic parameters and cognitive performance were obtained in 29 healthy older adults (mean age 75 years, 14 females) when they were walking freely on a sensorized carpet or during treadmill walking with an optoelectronic system, in single task or dual task conditions, using alternate repetition of letters as a cognitive verbal task. FINDINGS: During overground walking, speed, cadence, step length stride length, and double support time (all with P value<0.001) and cognitive performance (number of correct words, P<0.001) decreased substantially from single to dual task testing. When subjects walked at a fixed speed on the treadmill, cadence decreased significantly (P=0.005), whereas cognitive performance remained unaffected. INTERPRETATION: Both motor and cognitive performances decline during dual task testing with overground walking. Conversely, cognitive performance remains unaffected in dual task testing on the treadmill. In the light of current dual task paradigm, these findings may have relevant implication for our understanding of motor control, as they suggest that treadmill walk does not involve brain areas susceptible to interference from the introduction of a cognitive task.[Abstract] [Full Text] [Related] [New Search]