These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prevotella jejuni sp. nov., isolated from the small intestine of a child with coeliac disease. Author: Hedberg ME, Israelsson A, Moore ERB, Svensson-Stadler L, Wai SN, Pietz G, Sandström O, Hernell O, Hammarström ML, Hammarström S. Journal: Int J Syst Evol Microbiol; 2013 Nov; 63(Pt 11):4218-4223. PubMed ID: 23793857. Abstract: Five obligately anaerobic, Gram-stain-negative, saccharolytic and proteolytic, non-spore-forming bacilli (strains CD3 : 27, CD3 : 28(T), CD3 : 33, CD3 : 32 and CD3 : 34) are described. All five strains were isolated from the small intestine of a female child with coeliac disease. Cells of the five strains were short rods or coccoid cells with longer filamentous forms seen sporadically. The organisms produced acetic acid and succinic acid as major metabolic end products. Phylogenetic analysis based on comparative 16S rRNA gene sequence analysis revealed close relationships between CD3 : 27, CD3 : 28(T) and CD3 : 33, between CD3 : 32 and Prevotella histicola CCUG 55407(T), and between CD3 : 34 and Prevotella melaninogenica CCUG 4944B(T). Strains CD3 : 27, CD3 : 28(T) and CD3 : 33 were clearly different from all recognized species within the genus Prevotella and related most closely to but distinct from P. melaninogenica. Based on 16S rRNA, RNA polymerase β-subunit (rpoB) and 60 kDa chaperonin protein subunit (cpn60) gene sequencing, and phenotypic, chemical and biochemical properties, strains CD3 : 27, CD3 : 28(T) and CD3 : 33 are considered to represent a novel species within the genus Prevotella, for which the name Prevotella jejuni sp. nov. is proposed. Strain CD3 : 28(T) ( = CCUG 60371(T) = DSM 26989(T)) is the type strain of the proposed novel species. All five strains were able to form homologous aggregates, in which tube-like structures were connecting individual bacteria cells. The five strains were able to bind to human intestinal carcinoma cell lines at 37 °C.[Abstract] [Full Text] [Related] [New Search]