These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of chelators on the pharmacokinetics of (99m)Tc-labeled imaging agents for the prostate-specific membrane antigen (PSMA). Author: Ray Banerjee S, Pullambhatla M, Foss CA, Falk A, Byun Y, Nimmagadda S, Mease RC, Pomper MG. Journal: J Med Chem; 2013 Aug 08; 56(15):6108-21. PubMed ID: 23799782. Abstract: Technetium-99m, the most commonly used radionuclide in nuclear medicine, can be attached to biologically important molecules through a variety of chelating agents, the choice of which depends upon the imaging application. The prostate-specific membrane antigen (PSMA) is increasingly recognized as an important target for imaging and therapy of prostate cancer (PCa). Three different (99m)Tc-labeling methods were employed to investigate the effect of the chelator on the biodistribution and PCa tumor uptake profiles of 12 new urea-based PSMA-targeted radiotracers. This series includes hydrophilic ligands for radiolabeling with the [(99m)Tc(CO)3](+) core (L8-L10), traditional NxSy-based chelating agents with varying charge and polarity for the (99m)Tc-oxo core (L11-L18), and a (99m)Tc-organohydrazine-labeled radioligand (L19). (99m)Tc(I)-Tricarbonyl-labeled [(99m)Tc]L8 produced the highest PSMA+ PC3 PIP to PSMA- PC3 flu tumor ratios and demonstrated the lowest retention in normal tissues including kidney after 2 h. These results suggest that choice of chelator is an important pharmacokinetic consideration in the development of (99m)Tc-labeled radiopharmaceuticals targeting PSMA.[Abstract] [Full Text] [Related] [New Search]