These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hyaluronan up-regulates growth and invasion of trophoblasts in an autocrine manner via PI3K/AKT and MAPK/ERK1/2 pathways in early human pregnancy.
    Author: Zhu R, Huang YH, Tao Y, Wang SC, Sun Ch, Piao HL, Wang XQ, Du MR, Li DJ.
    Journal: Placenta; 2013 Sep; 34(9):784-91. PubMed ID: 23806178.
    Abstract:
    INTRODUCTION: As one of the key molecules in the extracellular matrix in human conceptus, hyaluronan (HA) has been receiving particular attention. Here, we have investigated the expression and regulation of different molecular weight HA on the biological behaviors of primary human trophoblasts during the first trimester of pregnancy. METHODS: The expression of HA and HA synthetase (HAS) by human first trimester trophoblasts was analyzed in placentae from normal pregnancy or miscarriage by immunochemistry and real-time RT-PCR, respectively. ELISA was used to measure the secretion of HA by primary trophoblasts. The effects of HA on the proliferation, apoptosis and invasiveness of trophoblasts were examined. We also investigated the signaling pathways involved in HA activation in human trophoblasts. RESULTS: The higher HAS2 expression and HA secretion were observed in normal villi than that of miscarriage, and the primary trophoblasts secreted HA continuously. High molecular weight HA (HMW-HA) and medium molecular weight HA (MMW-HA) promoted proliferation and invasiveness while inhibited apoptosis of trophoblasts. However, low molecular weight HA (LMW-HA) had no obvious effect on the growth or invasiveness of human trophoblasts. In addition, HMW-HA showed more efficiently than MMW-HA on the growth while MMW-HA displayed a more obvious effect on the invasiveness of trophoblasts than HMW-HA. HMW-HA activated PI3K/AKT and MAPK/ERK1/2 signaling pathways in trophoblasts. Blocking PI3K/AKT or MAPK/ERK1/2 signaling inhibited the HA-upregulated growth and invasiveness of human trophoblasts. CONCLUSION: Our results suggest that higher level and greater molecular mass of HA can promote trophoblast growth and invasion in an autocrine manner, which was beneficial to placentation and maintenance of human early pregnancy.
    [Abstract] [Full Text] [Related] [New Search]