These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Theoretical and experimental studies on isotachophoresis in multi-moving chelation boundary system formed with metal ions and EDTA.
    Author: Zhang W, Guo CG, Fan LY, Cao CX.
    Journal: Analyst; 2013 Sep 07; 138(17):5039-51. PubMed ID: 23806973.
    Abstract:
    In this paper, a general mode and theory of moving chelation boundary based isotachophoresis (MCB-based ITP), together with the concept of decisive metal ion (DMI) having the maximum complexation constant (lg Kmax) with the chelator, were developed from a multi-MCB (mMCB) system. The theoretical deductions were: (i) the reaction boundary velocities in the mMCB system at steady state were equal to each other, resulting in a novel MCB-based ITP separation of metal ions; (ii) the boundary directions and velocities in the system were controlled by the fluxes of chelator and DMI, rather than other metal ions; and (iii) a controllable stacking of metal ions could be simultaneously achieved in the developed system. To demonstrate the deductions, a series of experiments were conducted by using model chelator of EDTA and metal ions of Cu(II) and Co(II) due to characteristic colors of blue [Cu-EDTA](2-) and pink [Co-EDTA](2-) complexes. The experiments demonstrated the correctness of theoretical deductions, indicating the validity of the developed model and theory of ITP. These findings provide guidance for the development of MRB-based ITP separation and stacking of metal ions in biological sample matrix and heavy metal ions in environmental samples.
    [Abstract] [Full Text] [Related] [New Search]