These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Unique monoclonal antibodies specifically bind surface structures on human fetal erythroid blood cells.
    Author: Zimmermann S, Hollmann C, Stachelhaus SA.
    Journal: Exp Cell Res; 2013 Oct 15; 319(17):2700-7. PubMed ID: 23819989.
    Abstract:
    BACKGROUND: Continuing efforts in development of non-invasive prenatal genetic tests have focused on the isolation of fetal nucleated red blood cells (NRBCs) from maternal blood for decades. Because no fetal cell-specific antibody has been described so far, the present study focused on the development of monoclonal antibodies (mAbs) to antigens that are expressed exclusively on fetal NRBCs. METHODS: Mice were immunized with fetal erythroid cell membranes and hybridomas screened for Abs using a multi-parameter fluorescence-activated cell sorting (FACS). Selected mAbs were evaluated by comparative FACS analysis involving Abs known to bind erythroid cell surface markers (CD71, CD36, CD34), antigen-i, galactose, or glycophorin-A (GPA). Specificity was further confirmed by extensive immunohistological and immunocytological analyses of NRBCs from umbilical cord blood and fetal and adult cells from liver, bone marrow, peripheral blood, and lymphoid tissues. RESULTS: Screening of 690 hybridomas yielded three clones of which Abs from 4B8 and 4B9 clones demonstrated the desired specificity for a novel antigenic structure expressed on fetal erythroblast cell membranes. The antigenic structure identified is different from known surface markers (CD36, CD71, GPA, antigen-i, and galactose), and is not present on circulating adult erythroid cells, except for occasional detectability in adult bone marrow cells. CONCLUSIONS: The new mAbs specifically bind the same or highly overlapping epitopes of a surface antigen that is almost exclusively expressed on fetal erythroid cells. The high specificity of the mAbs should facilitate development of simple methods for reliable isolation of fetal NRBCs and their use in non-invasive prenatal diagnosis of fetal genetic status.
    [Abstract] [Full Text] [Related] [New Search]