These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hemodynamic adjustments during breath-holding in trained divers.
    Author: Costalat G, Coquart J, Castres I, Tourny C, Lemaitre F.
    Journal: Eur J Appl Physiol; 2013 Oct; 113(10):2523-9. PubMed ID: 23821240.
    Abstract:
    PURPOSE: Voluntary breath-holding (BH) elicits several hemodynamic changes, but little is known about maximal static immersed-body BH. We hypothesized that the diving reflex would be strengthened with body immersion and would spare more oxygen than maximal dry static BH, resulting in a longer BH duration. METHODS: Eleven trained breath-hold divers (BHDs) performed a maximal dry-body BH and a maximal immersed-body BH. Cardiac output (CO), stroke volume (SV), heart rate (HR), left ventricular end-diastolic volume (LVEDV), contractility index (CTI), and ventricular ejection time (VET) were continuously recorded by bio-impedancemetry (PhysioFlow PF-05). Arterial oxygen saturation (SaO2) was assessed with a finger probe oximeter. RESULTS: In both conditions, BHDs presented a bi-phasic kinetic for CO and a tri-phasic kinetic for SV and HR. In the first phase of immersed-body BH and dry-body BH, results (mean ± SD) expressed as percentage changes from starting values showed decreased CO (55.9 ± 10.4 vs. 39.3 ± 16.8 %, respectively; p < 0.01 between conditions), due to drops in both SV (24.9 ± 16.2 vs. 9.0 ± 8.5 %, respectively; p < 0.05 between conditions) and HR (39.7 ± 16.7 vs. 33.6 ± 17.0 %, respectively; p < 0.01 between conditions). The second phase was marked by an overall stabilization of hemodynamic variables. In the third one, CO kept stabilizing due to increased SV (17.0 ± 20.2 vs. 10.9 ± 13.8 %, respectively; p < 0.05 between conditions) associated with a second HR drop (14.0 ± 10.0 vs. 12.7 ± 8.9 %, respectively; p < 0.01 between conditions). CONCLUSION: This study highlights similar time-course patterns for cardiodynamic variables during dry-body and immersed-body BH, although the phenomenon was more pronounced in the latter condition.
    [Abstract] [Full Text] [Related] [New Search]