These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TNF-α provokes electrical abnormalities in rat atrial myocardium via a NO-dependent mechanism. Author: Abramochkin DV, Kuzmin VS, Mitrochin VM, Kalugin L, Dvorzhak A, Makarenko EY, Schubert R, Kamkin A. Journal: Pflugers Arch; 2013 Dec; 465(12):1741-52. PubMed ID: 23827962. Abstract: Stretch-induced depolarizations of cardiomyocytes, which are related to activity of mechano-gated cation channels (MGCs), can lead to serious arrhythmias. However, signaling pathways leading to activation of mechano-gated channels by stretch remain almost unexplored. Using standard sharp microelectrodes, the present study addresses the hypothesis that tumor necrosis factor-alpha (TNF-α) modulates stretch-induced electrophysiological abnormalities in rat atrial myocardium by a mechanism involving nitric oxide (NO)-dependent pathways. TNF-α (50 ng/ml) produced a marked prolongation of action potential, subsequently transforming into humplike depolarizations and, finally, leading to occurrence of arrhythmias. These effects developed slowly during 25 min of TNF-α application. Similar electrical effects were induced by stretching the preparations. A blocker of MGCs, Gd(3+) (40 μM), completely abolished action potential (AP) prolongations and electrical abnormalities caused by TNF-α or stretch. Further, a donor of exogenous NO, S-nitroso-N-acetylpenicillamine SNAP (300 μM), evoked the same electrical abnormalities as TNF-α and tissue stretch. Both TNF-α and stretch failed to produce their typical effects after pretreatment of the preparations with the NO-synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) (100 μM). Thus, the present study shows (i) that TNF-α and the NO-donor SNAP evoke MGC-mediated electrical abnormalities in rat atrial myocardium in the absence of stretch that is very similar to stretch-evoked electrical events and (ii) that the TNF-α-induced electrical abnormalities are mediated by NO synthase. In conclusion, our data suggest that NO is an endogenous modulator of MGCs and mediates proarrhythmic effects of TNF-α in mammalian organism.[Abstract] [Full Text] [Related] [New Search]