These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interpretation of 1H and 2H spin-lattice relaxation dispersions: insights from molecular dynamics simulations of polymer melts. Author: Henritzi P, Bormuth A, Vogel M. Journal: Solid State Nucl Magn Reson; 2013; 54():32-40. PubMed ID: 23830720. Abstract: We demonstrate that molecular dynamics simulations are a versatile tool to ascertain the interpretation of spin-lattice relaxation data. For (1)H, our simulation approach allows us to separate and to compare intra- and inter-molecular contributions to spin-lattice relaxation dispersions. Dealing with the important example of polymer melts, we show that the intramolecular parts of (1)H spectral densities and correlation functions are governed by rotational motion, while their inter-molecular counterparts provide access to translational motion, in particular, to mean-squared displacements and self-diffusion coefficients. Exploiting that the full microscopic information is available from molecular dynamics simulations, we determine the range of validity of experimental approaches, which often assume Gaussian dynamics, and we provide guidelines for the determination of free parameters required in experimental analyses. For (2)H, we examine the traditional methodology to extract correlation times of complex dynamics from relaxation data. Furthermore, based on knowledge from our computational study, it is shown that measurement of (2)H spin-lattice relaxation dispersions allows one to disentangle the intra- and inter-molecular contributions to the corresponding (1)H data in experimental work. Altogether, our simulation results yield a solid basis for future (1)H and (2)H spin-lattice relaxation analysis.[Abstract] [Full Text] [Related] [New Search]