These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Temperature-triggered on-demand drug release enabled by hydrogen-bonded multilayers of block copolymer micelles. Author: Zhu Z, Gao N, Wang H, Sukhishvili SA. Journal: J Control Release; 2013 Oct 10; 171(1):73-80. PubMed ID: 23831052. Abstract: We report on hydrogen-bonded layer-by-layer (LbL) films as a robust, reusable platform for temperature-triggered "on-demand" release of drugs. Films with high drug loading capacity, temperature-controlled on-off drug release, and stability at physiological conditions were enabled by assembly of tannic acid (TA) with temperature-responsive block copolymer micelles (BCMs), which were pre-formed by heating solutions of a neutral diblock copolymer, poly(N-vinylpyrrolidone)-b-poly(N-isopropylacrylamide) (PVPON-b-PNIPAM), to a temperature above the lower critical solution temperature (LCST) of PNIPAM. The BCM/TA films exhibited temperature-triggered swelling/deswelling transitions at physiological conditions (swelling ratios of 1.75 and 1.2 at 37°C and 20°C, respectively). A model drug, doxorubicin (DOX) was incorporated into the film at a high drug-to-matrix ratio (~9.3wt.% of DOX per film mass), with a total loading capacity controlled by the film thickness. At 37°C, DOX was efficiently retained within the hydrophobic BCM cores of BCM/TA films, whereas exposure to a lower temperature (20°C) triggered fast DOX release. While neither bare BCM-containing films nor films loaded with DOX showed cytotoxicity at 37°C, drug released from films at lower temperature exhibited high potency against breast cancer cells. Repeated on/off drug release was demonstrated with 1.5-μm-thick DOX-loaded films, allowing at least three 30-min cooling cycles with consistent DOX (~12-16% of loaded DOX released for each cycle) released over a 4-day period. Despite significant stress associated with multiple swelling/deswelling cycles, films maintained their structural integrity in PBS, and each film could be repeatedly loaded with drug and used more than 15 times with only ~7% loss in film thickness and no obvious changes in reloading capacity or release profiles. This work presents the first proof-of-concept utility of temperature-responsive BCM-containing films for repeated on-demand release of a drug.[Abstract] [Full Text] [Related] [New Search]