These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural basis for the association of MAP6 protein with microtubules and its regulation by calmodulin. Author: Lefèvre J, Savarin P, Gans P, Hamon L, Clément MJ, David MO, Bosc C, Andrieux A, Curmi PA. Journal: J Biol Chem; 2013 Aug 23; 288(34):24910-22. PubMed ID: 23831686. Abstract: Microtubules are highly dynamic αβ-tubulin polymers. In vitro and in living cells, microtubules are most often cold- and nocodazole-sensitive. When present, the MAP6/STOP family of proteins protects microtubules from cold- and nocodazole-induced depolymerization but the molecular and structure determinants by which these proteins stabilize microtubules remain under debate. We show here that a short protein fragment from MAP6-N, which encompasses its Mn1 and Mn2 modules (MAP6(90-177)), recapitulates the function of the full-length MAP6-N protein toward microtubules, i.e. its ability to stabilize microtubules in vitro and in cultured cells in ice-cold conditions or in the presence of nocodazole. We further show for the first time, using biochemical assays and NMR spectroscopy, that these effects result from the binding of MAP6(90-177) to microtubules with a 1:1 MAP6(90-177):tubulin heterodimer stoichiometry. NMR data demonstrate that the binding of MAP6(90-177) to microtubules involve its two Mn modules but that a single one is also able to interact with microtubules in a closely similar manner. This suggests that the Mn modules represent each a full microtubule binding domain and that MAP6 proteins may stabilize microtubules by bridging tubulin heterodimers from adjacent protofilaments or within a protofilament. Finally, we demonstrate that Ca(2+)-calmodulin competes with microtubules for MAP6(90-177) binding and that the binding mode of MAP6(90-177) to microtubules and Ca(2+)-calmodulin involves a common stretch of amino acid residues on the MAP6(90-177) side. This result accounts for the regulation of microtubule stability in cold condition by Ca(2+)-calmodulin.[Abstract] [Full Text] [Related] [New Search]