These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification and characterization of RcMADS1, an AGL24 ortholog from the holoparasitic plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae).
    Author: Ramamoorthy R, Phua EE, Lim SH, Tan HT, Kumar PP.
    Journal: PLoS One; 2013; 8(6):e67243. PubMed ID: 23840638.
    Abstract:
    Rafflesia, a holoparasitic genus that produces the largest flower in the world is characterized by the absence of leaves, stem and other macroscopic organs. To better understand the molecular regulation of flower development in this genus we isolated and characterized a floral MADS-box gene, namely, RcMADS1 from Rafflesia cantleyi. Heterologous expression analysis in Arabidopsis was chosen because Rafflesia is not amenable to genetic manipulations. RcMADS1 shares sequence similarity with AGAMOUS-LIKE 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) of Arabidopsis. Ectopic expression of RcMADS1 in Arabidopsis caused early flowering and conversion of sepals and petals into leaf-like structures, and carpels into inflorescences. In 35S::RcMADS1 plants SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), a downstream target gene of AGL24, was upregulated. 35S::RcMADS1 plants exhibit early flowering and conversion of the floral meristem into inflorescence meristem, as in 35S::AGL24 plants. Similar to AGL24, RcMADS1 could rescue the late flowering phenotypes of agl24-1 and FRIGIDA, but not the early flowering of svp-41. Based on these results, we propose that RcMADS1 is a functional ortholog of Arabidopsis AGL24.
    [Abstract] [Full Text] [Related] [New Search]