These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ratchet universality in the presence of thermal noise.
    Author: Martínez PJ, Chacón R.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062114. PubMed ID: 23848634.
    Abstract:
    We show that directed ratchet transport of a driven overdamped Brownian particle subjected to a spatially periodic and symmetric potential can be reliably controlled by tailoring a biharmonic temporal force, in coherence with the degree-of-symmetry-breaking mechanism. We demonstrate that the effect of finite temperature on the purely deterministic ratchet scenario can be understood as an effective noise-induced change of the potential barrier which is in turn controlled by the degree-of-symmetry-breaking mechanism. Remarkably, we find that the same universal scenario holds for any symmetric periodic potential, while optimal directed ratchet transport occurs when the impulse transmitted (spatial integral over a half period) by the symmetric spatial force is maximum.
    [Abstract] [Full Text] [Related] [New Search]