These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electric-field-induced switchable dark conglomerate phases in a bent-core liquid crystal exhibiting reverse columnar phases.
    Author: Deepa GB, Radhika S, Sadashiva BK, Pratibha R.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062508. PubMed ID: 23848706.
    Abstract:
    Electric-field-induced transitions into switchable dark conglomerate (DC) phases from two types of reverse columnar mesophases have been observed in the bent-core (BC) compound 2,7-naphthylene bis[4-(3-methyl-4-n-tetradecyloxybenzoyloxy)] benzoate. Optical and x-ray studies show that the higher temperature columnar phase corresponds to the orthogonal B(1rev) phase, whereas the lower temperature columnar phase is a variant of the B(1revtilt) phase. As the layer fragments in this phase are modulated in order to relieve the steric hindrance caused by an anticlinic tilting in adjacent blocks, it has been named B(1revtiltM). The shape of the chiral domains are different in the DC phases viz. DC-B(1rev) and DC-B(1revtiltM) obtained by applying the electric field in the B(1rev) and B(1revtiltM) phases, respectively. While the chiral domains in the DC-B(1rev) phase appear similar to those observed in other DC phases, the shape of the domains in the DC-B(1revtiltM) phase appear to have some similarity to the domains in the banana leaf texture in the B(1revtiltM) phase implying that the detailed structure in this DC phase may be different. Optical observations, electro-optics, and dielectric studies show that the DC-B(1rev) and DC-B(1revtiltM) phases are both switchable and possess a local SmC(S)P(F) type of structure. As the temperature is decreased the switching behavior changes from ferroelectric to antiferroelectric. The temperature at which this changeover starts occurring coincides with the temperature at which the layer modulation occurs to overcome anticlinic tilt and the B(1rev) to B(1revtiltM) phase transition takes place without the application of the electric field. The change in switching behavior is attributed to a transformation into flat layers with the SmC(A)P(A) type of structure as also evidenced by the nucleation of bright regions alongside the chiral domains.
    [Abstract] [Full Text] [Related] [New Search]