These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation.
    Author: Lou Q, Guo Z, Shi B.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063301. PubMed ID: 23848800.
    Abstract:
    Outflow boundary condition (OBC) is a critical issue in computational fluid dynamics. As a type of numerical method for fluid flows, the lattice Boltzmann equation (LBE) method has gained much success in a variety of complex flows, and certain OBCs have been suggested for the LBE in simulating simple single-phase flows. However, very few discussions on the OBCs have been made for the two-phase LBE method. In this work, three types of OBCs that are widely used in the LBE for single-phase flows, i.e., the Neumann boundary condition, the convective boundary condition, and the extrapolation boundary condition, are extended to a two-phase LBE method and their performances are investigated. The comprehensive results of several two-phase flows show that these boundary conditions behave quite differently in the simulations of two-phase flows. Specifically, it is found that the Neumann boundary condition and the extrapolation boundary condition give rather poor predictions, while the type of convective boundary conditions work well, although the choice of the convection velocity has some slight influences on the results. We also apply these OBC schemes to some other two-phase models, and similar observations are found.
    [Abstract] [Full Text] [Related] [New Search]