These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamics and rRNA transcriptional activity of lactococci and lactobacilli during Cheddar cheese ripening. Author: Desfossés-Foucault É, LaPointe G, Roy D. Journal: Int J Food Microbiol; 2013 Aug 16; 166(1):117-24. PubMed ID: 23850855. Abstract: Cheddar cheese is a complex ecosystem where both the bacterial population and the cheese making process contribute to flavor and texture development. The aim of this study was to use molecular methods to evaluate the impact of milk heat treatment and ripening temperature on starter lactococci and non-starter lactic acid bacteria (NSLAB) throughout ripening of Cheddar cheese. Eight Cheddar cheese batches were manufactured (four with thermized and four with pasteurized milk) and ripened at 4, 7 and 12°C to analyze the bacterial composition and rRNA transcriptional activity reflecting the ability of lactococci and lactobacilli to synthesize proteins. Abundance and rRNA transcription of lactococci and lactobacilli were quantified after DNA and RNA extraction by using quantitative PCR (qPCR) and reverse transcription-quantitative PCR (RT-qPCR) targeting the 16S rRNA gene, respectively. Results showed that lactococci remained dominant throughout ripening, although 16S rRNA genome and cDNA copies/g of cheese decreased by four and two log copy numbers, respectively. Abundance and rRNA transcription of Lactobacillus paracasei, Lactobacillus buchneri/parabuchneri, Lactobacillus rhamnosus, Lactobacillus brevis, and Lactobacillus coryniformis as well as total lactobacilli were also estimated using specific 16S rRNA primers. L. paracasei and L. buchneri/parabuchneri concomitantly grew in cheese made from thermized milk at 7 and 12°C, although L. paracasei displayed the most rRNA transcription among Lactobacillus species. This work showed that rRNA transcriptional activity of lactococci decreased throughout ripening and supports the usefulness of RNA analysis to assess which bacterial species have the ability to synthesize proteins during ripening, and could thereby contribute to cheese quality.[Abstract] [Full Text] [Related] [New Search]