These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Per-Arnt-Sim kinase regulates pancreatic duodenal homeobox-1 protein stability via phosphorylation of glycogen synthase kinase 3β in pancreatic β-cells.
    Author: Semache M, Zarrouki B, Fontés G, Fogarty S, Kikani C, Chawki MB, Rutter J, Poitout V.
    Journal: J Biol Chem; 2013 Aug 23; 288(34):24825-33. PubMed ID: 23853095.
    Abstract:
    In pancreatic β-cells, glucose induces the binding of the transcription factor pancreatic duodenal homeobox-1 (PDX-1) to the insulin gene promoter to activate insulin gene transcription. At low glucose levels, glycogen synthase kinase 3β (GSK3β) is known to phosphorylate PDX-1 on C-terminal serine residues, which triggers PDX-1 proteasomal degradation. We previously showed that the serine/threonine Per-Arnt-Sim domain-containing kinase (PASK) regulates insulin gene transcription via PDX-1. However, the mechanisms underlying this regulation are unknown. In this study, we aimed to identify the role of PASK in the regulation of PDX-1 phosphorylation, protein expression, and stability in insulin-secreting cells and isolated rodent islets of Langerhans. We observed that glucose induces a decrease in overall PDX-1 serine phosphorylation and that overexpression of WT PASK mimics this effect. In vitro, PASK directly phosphorylates GSK3β on its inactivating phosphorylation site Ser(9). Overexpression of a kinase-dead (KD), dominant negative version of PASK blocks glucose-induced Ser(9) phosphorylation of GSK3β. Accordingly, GSK3β Ser(9) phosphorylation is reduced in islets from pask-null mice. Overexpression of WT PASK or KD GSK3β protects PDX-1 from degradation and results in increased PDX-1 protein abundance. Conversely, overexpression of KD PASK blocks glucose-induction of PDX-1 protein. We conclude that PASK phosphorylates and inactivates GSK3β, thereby preventing PDX-1 serine phosphorylation and alleviating GSK3β-mediated PDX-1 protein degradation in pancreatic β-cells.
    [Abstract] [Full Text] [Related] [New Search]