These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Homoserine catabolism by Rhizobium leguminosarum bv. viciae 3841 requires a plasmid-borne gene cluster that also affects competitiveness for nodulation. Author: Vanderlinde EM, Hynes MF, Yost CK. Journal: Environ Microbiol; 2014 Jan; 16(1):205-17. PubMed ID: 23859230. Abstract: Homoserine represents a substantial component of pea root exudate that may be important for plant-microbe interactions in the rhizosphere. We identified a gene cluster on plasmid pRL8JI that is required for homoserine utilization by Rhizobium leguminosarum bv. viciae. The genes are arranged as two divergently expressed predicted operons that were induced by L-homoserine, pea root exudate, and were expressed on pea roots. A mutation in gene pRL80083 that prevented utilization of homoserine as a sole carbon and energy source affected the mutant's ability to nodulate peas and lentils competitively. The homoserine gene cluster was present in approximately 47% of natural R. leguminosarum isolates (n = 59) and was strongly correlated with homoserine utilization. Conjugation of pRL8JI to R. leguminosarum 4292 or Agrobacterium tumefaciens UBAPF2 was sufficient for homoserine utilization. The presence of L-homoserine increased conjugation efficiency of pRL8JI from R. leguminosarum to a pRL8JI-cured derivative of R. leguminosarum 1062 and to A. tumefaciens UBAPF2, and induced expression of the plasmid transfer gene trbB; however, there was no difference in conjugation efficiency or trbB expression with A. tumefaciens UBAPF2pRL8-Gm as the donor suggesting that other genes in R. leguminosarum may contribute to regulating conjugation of pRL8 in the presence of homoserine.[Abstract] [Full Text] [Related] [New Search]