These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The crystal structure of an isopenicillin N synthase complex with an ethereal substrate analogue reveals water in the oxygen binding site. Author: Clifton IJ, Ge W, Adlington RM, Baldwin JE, Rutledge PJ. Journal: FEBS Lett; 2013 Aug 19; 587(16):2705-9. PubMed ID: 23860486. Abstract: Isopenicillin N synthase (IPNS) is a non-heme iron oxidase central to the biosynthesis of β-lactam antibiotics. IPNS converts the tripeptide δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N while reducing molecular oxygen to water. The substrate analogue δ-(L-α-aminoadipoyl)-L-cysteinyl-O-methyl-D-threonine (ACmT) is not turned over by IPNS. Epimeric δ-(L-α-aminoadipoyl)-L-cysteinyl-O-methyl-D-allo-threonine (ACmaT) is converted to a bioactive penam product. ACmT and ACmaT differ from each other only in the stereochemistry at the β-carbon atom of their third residue. These substrates both contain a methyl ether in place of the isopropyl group of ACV. We report an X-ray crystal structure for the anaerobic IPNS:Fe(II):ACmT complex. This structure reveals an additional water molecule bound to the active site metal, held by hydrogen-bonding to the ether oxygen atom of the substrate analogue.[Abstract] [Full Text] [Related] [New Search]