These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional characterization of acetylcholine receptors and calcium signaling in rat testicular capsule contraction. Author: da Silva Júnior ED, de Souza BP, Rodrigues JQ, Caricati-Neto A, Jurkiewicz A, Jurkiewicz NH. Journal: Eur J Pharmacol; 2013 Aug 15; 714(1-3):405-13. PubMed ID: 23872374. Abstract: The motor activity of mammalian testicular capsule (TC) contributes to male fertility and infertility, but the acetylcholine receptors related to the contractions induced by cholinergic drugs are poorly known. Indeed to characterize the acetylcholine receptors and cellular signaling by Ca(2+) involved in TC motor activity of rats, the potency of agonists (pD₂) and antagonists (pA₂) of acetylcholine receptors, and effects of Ca(2+) cellular transport blockers on the cholinergic contractions were evaluated. pD₂ values of acetylcholine (5.98) were ten-fold higher than that of carbachol (4.99). Efficacy (Emax) of acetylcholine and carbachol to induce contractions corresponded to 95% and 97% of Emax for KCl, but Emax for nicotine was very low (8% of Emax for KCl). Further, physostigmine did not affect the acetylcholine potency. Contractions induced by acetylcholine or carbachol were antagonized by muscarinic but not nicotinic antagonist. The order of pA₂ values obtained for muscarinic antagonists, namely atropine>4-DAMP>AF-DX116>pirenzepine, corresponded to a typical profile of M3 receptors. Contractions induced by acetylcholine or carbachol were inhibited by blockers of Ca(2+) influx through voltage-dependent calcium channels (nifedipine and Ni(2+)), Ca(2+) reuptake by sarco-endoplasmic reticulum (cyclopiazonic acid) and mitochondria (FCCP). The protein kinase C (PKC) inhibitor chelerythrine only affected the acetylcholine-induced contraction. These results suggest that TC motor activity of rats are mediated mainly by M₃ receptors followed by the increase of cytosolic Ca(2+) concentration regulated by voltage-dependent calcium channels, sarco-endoplasmic reticulum and mitochondria. Furthermore, the differential effects of chelerythrine in the acetylcholine or carbachol-induced contractions are discussed.[Abstract] [Full Text] [Related] [New Search]