These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Submicromolar Ag+ increases passive Na+ permeability and inhibits the respiration-supported formation of Na+ gradient in Bacillus FTU vesicles.
    Author: Semeykina AL, Skulachev VP.
    Journal: FEBS Lett; 1990 Aug 20; 269(1):69-72. PubMed ID: 2387416.
    Abstract:
    The effect of Ag+ on Na+ pumping by Na(+)-motive NADH-quinone reductase and terminal oxidase has been studied in Bacillus FTU inside-out vesicles. Very low concentrations of Ag+ (C1/2 = 1 x 10(-8) M or 2 x 10(-12) g ion.mg protein-1) are shown to inhibit the uphill Na+ uptake coupled to the oxidation of NADH by fumarate or of ascorbate + TMPD by oxygen but exert no effect on the H+ uptake by the H(+)-motive respiratory chain. Low Ag+ also induces a specific increase in the Na+ permeability of the vesicles. HQNO, added before and not after Ag+, prevents the Ag(+)-induced permeability increase, with effective HQNO concentrations being similar to those inhibiting the uphill Na(+)-uptake coupled to the NADH-fumarate oxidoreduction. Reduction of terminal oxidase by ascorbate + TMPD in the presence of cyanide sensitizes the Na+ permeability to Ag+. It is suggested that low [Ag+], known as a specific inhibitor of electron transport by the Na(+)-motive NADH-quinone reductase, uncouples the electron and Na+ transports so that the Ag(+)-modified NADH-quinone reductase operates as an Na+ channel rather than an Na+ pump. This effect is discussed in connection with the antibacterial action of Ag+.
    [Abstract] [Full Text] [Related] [New Search]