These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structure and dynamics of soft repulsive colloidal suspensions in the vicinity of the glass transition.
    Author: Crassous JJ, Casal-Dujat L, Medebach M, Obiols-Rabasa M, Vincent R, Reinhold F, Boyko V, Willerich I, Menzel A, Moitzi C, Reck B, Schurtenberger P.
    Journal: Langmuir; 2013 Aug 20; 29(33):10346-59. PubMed ID: 23875751.
    Abstract:
    We use a combination of different scattering techniques and rheology to highlight the link between structure and dynamics of dense aqueous suspensions of soft repulsive colloids in the vicinity of a glass transition. Three different latex formulations with an increasing amount of the hydrophilic component resulting in either purely electrostatically or electrosterically stabilized suspensions are investigated. From the analysis of the static structure factor measured by small-angle X-ray scattering, we derive an effective volume fraction that includes contributions from interparticle interactions. We further investigate the dynamics of the suspensions using 3D cross-correlation dynamic light scattering (3DDLS) and rheology. We analyze the data using an effective hard sphere model and in particular compare the linear viscoelasticity and flow behavior to the predictions of mode coupling theory, which accounts for a purely kinetic glass transition determined by the equilibrium structure factor. We demonstrate that seemingly very different colloidal systems exhibit the same generic behavior when the effects from interparticle interactions are incorporated using an effective volume fraction description.
    [Abstract] [Full Text] [Related] [New Search]