These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca2+/calmodulin-dependent protein kinase II and protein kinase A differentially regulate sarcoplasmic reticulum Ca2+ leak in human cardiac pathology. Author: Fischer TH, Herting J, Tirilomis T, Renner A, Neef S, Toischer K, Ellenberger D, Förster A, Schmitto JD, Gummert J, Schöndube FA, Hasenfuss G, Maier LS, Sossalla S. Journal: Circulation; 2013 Aug 27; 128(9):970-81. PubMed ID: 23877259. Abstract: BACKGROUND: Sarcoplasmic reticulum (SR) Ca(2+) leak through ryanodine receptor type 2 (RyR2) dysfunction is of major pathophysiological relevance in human heart failure (HF); however, mechanisms underlying progressive RyR2 dysregulation from cardiac hypertrophy to HF are still controversial. METHODS AND RESULTS: We investigated healthy control myocardium (n=5) and myocardium from patients with compensated hypertrophy (n=25) and HF (n=32). In hypertrophy, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and protein kinase A (PKA) both phosphorylated RyR2 at levels that were not different from healthy myocardium. Accordingly, inhibitors of these kinases reduced the SR Ca(2+) leak. In HF, however, the SR Ca(2+) leak was nearly doubled compared with hypertrophy, which led to reduced systolic Ca(2+) transients, a depletion of SR Ca(2+) storage and elevated diastolic Ca(2+) levels. This was accompanied by a significantly increased CaMKII-dependent phosphorylation of RyR2. In contrast, PKA-dependent RyR2 phosphorylation was not increased in HF and was independent of previous β-blocker treatment. In HF, CaMKII inhibition but not inhibition of PKA yielded a reduction of the SR Ca(2+) leak. Moreover, PKA inhibition further reduced SR Ca(2+) load and systolic Ca(2+) transients. CONCLUSIONS: In human hypertrophy, both CaMKII and PKA functionally regulate RyR2 and may induce SR Ca(2+) leak. In the transition from hypertrophy to HF, the diastolic Ca(2+) leak increases and disturbed Ca(2+) cycling occurs. This is associated with an increase in CaMKII- but not PKA-dependent RyR2 phosphorylation. CaMKII inhibition may thus reflect a promising therapeutic target for the treatment of arrhythmias and contractile dysfunction.[Abstract] [Full Text] [Related] [New Search]