These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: HS N-sulfation and iduronic acids play an important role in the infection of respiratory syncytial virus in vitro. Author: Dong LQ, Wang XQ, Guo YN, Wu J, Li S, Yu P, Wang Z. Journal: Eur Rev Med Pharmacol Sci; 2013 Jul; 17(14):1864-8. PubMed ID: 23877848. Abstract: BACKGROUND: As a member of Glycosaminoglycans (GAGs), heparan sulfate (HS) are sulfated to varying extents and used by a large number of viruses to initiate infection, including respiratory syncytial virus (RSV). Heparinases I, II, III can remove N-sulfation and iduronic acids units of HS, and low-molecular-weight heparin (LMWH) has a very similar structure to that of HS. AIM: The tropism of RSV for different cell lines and the efficiency of Heparinases and LMWH in inhibiting RSV infection were estimated in this study. MATERIALS AND METHODS: Hela, Hep-2, HEK293 and Lo2 cell lines were pretreated with heparinases I, II, III and LMWH, and the cells were infected by RSV in vitro. RSV infectivity was determined by flow cytometry and western-blot. RESULTS: All cells were susceptible to RSV except Lo2. Heparinases I, II, III and LMWH treatments reduced the susceptibility of Hep-2 cells to RSV infection. For HEK-293 heparinase II and III treatment could reduce RSV infection. All enzymes could not change the susceptibility of Hela cells to RSV infection. CONCLUSIONS: These findings suggest that the heterogeneity of HS especially for rich N-sulfation and iduronic acids may play an important role in RSV infection in some mammalian cells.[Abstract] [Full Text] [Related] [New Search]