These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transepithelial permeability studies of flavan-3-ol-C-glucosides and procyanidin dimers and trimers across the Caco-2 cell monolayer.
    Author: Hemmersbach S, Brauer SS, Hüwel S, Galla HJ, Humpf HU.
    Journal: J Agric Food Chem; 2013 Aug 21; 61(33):7932-40. PubMed ID: 23885956.
    Abstract:
    In this study the permeability of two flavanol-C-glucosides (FCglcs) and five dimeric and trimeric flavan-3-ols, namely, procyanidins (PCs), was investigated with the human colon carcinoma cell line (Caco-2) model. These compounds can be found especially in cocoa, and they are of great interest due to their assumed beneficial health effects. Transepithelial electrical resistance (TEER) and capacitance were measured online with a CellZscope device prior to and during the whole experiment to guarantee the maintenance of the barrier properties. The transport experiments with pure, single compounds (50-300 μM) from apical to basolateral side showed slight permeation of PCs A2, B2, and B5 and cinnamtannin B1 (CB1) as well as (-)-catechin-6-C-glucoside (C6Cglc) and (-)-catechin-8-C-glucoside (C8Cglc) of about 0.02-0.2% after 24 h. Transport of PC C1 could not be detected. Inhibition of P-glycoprotein (Pgp) increased the permeation of PC B2 and CB1 to the basolateral side, which indicates that Pgp counteracts the transport of these compounds. Metabolites (epicatechin, 3'- and 4'-O-epicatechin) in very small amounts were detectable only for PC B2. These are the first data concerning the permeability of flavan-3-ol-C-glucosides across the Caco-2 cell monolayer.
    [Abstract] [Full Text] [Related] [New Search]