These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin modulates radiosensitivity by downregulating serine/threonine kinase 38 via Sp1 inhibition.
    Author: Enomoto A, Fukasawa T, Takamatsu N, Ito M, Morita A, Hosoi Y, Miyagawa K.
    Journal: Eur J Cancer; 2013 Nov; 49(16):3547-58. PubMed ID: 23886587.
    Abstract:
    The ansamycin-based HSP90 inhibitor 17-AAG (17-allylamino-17-demethoxygeldanamycin) combats tumors and has been shown to modulate cellular sensitivity to radiation, prompting researchers to use 17-AAG as a radiosensitizer. 17-AAG causes the degradation of several oncogenic and signaling proteins. We previously demonstrated that oxidative stress activates serine/threonine kinase 38 (STK38), a member of the protein kinase A (PKA)/PKG/PKC-like family. In the present study, we investigated how 17-AAG affects STK38 expression, and evaluated STK38's role in the regulation of radiosensitivity. We found that 17-AAG depleted cellular STK38 and reduced STK38's kinase activity. Importantly, 17-AAG downregulated the stk38 gene expression. Deletion analysis and site-directed mutagenesis experiments demonstrated that Sp1 was required for the stk38 promoter activity. Treatment with 17-AAG inhibited Sp1's binding to the stk38 promoter by decreasing the amount of Sp1 and knocking down Sp1 reduced STK38 expression. Moreover, 17-AAG treatment or STK38 knockdown enhanced the radiosensitivity of HeLa cells. Our data provide a novel mechanism, mediated by stk38 downregulation, by which 17-AAG radiosensitizes cells.
    [Abstract] [Full Text] [Related] [New Search]