These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of blood plasma collected after adrenocorticotropic hormone administration during the preovulatory period in the sow on oocyte in vitro maturation.
    Author: González R, Sjunnesson YC.
    Journal: Theriogenology; 2013 Oct 01; 80(6):673-83. PubMed ID: 23886600.
    Abstract:
    Reproduction may be affected by stressful events changing the female endocrine or metabolic profile. An altered environment during oocyte development could influence the delicate process of oocyte maturation. Here, the effect of simulated stress by media supplementation with blood plasma from sows after adrenocorticotropic hormone (ACTH) administration during the preovulatory period was assessed. Oocytes were matured for 46 hours in the presence of plasma from ACTH-treated sows, or plasma from NaCl-treated control sows, or medium without plasma (BSA group). The plasma used had been collected at 36 and 12 hours (±2 hours) before ovulation (for the first 24 hours + last 22 hours of maturation, respectively). Subsequent fertilization and embryo development were evaluated. Actin cytoskeleton and mitochondrial patterns were studied by confocal microscopy both in the oocytes and the resulting blastocysts. Nuclear maturation did not differ between treatments. Subtle differences were observed in the actin microfilaments in oocytes; however, mitochondrial patterns were associated with the treatment (P < 0.001). These differences in mitochondrial patterns were not reflected by in vitro outcomes, which were similar in all groups. In conclusion, an altered hormonal environment provided by a brief exposure to plasma from ACTH-treated sows during in vitro oocyte maturation could induce alterations in actin cytoskeleton and mitochondrial patterns in oocytes. However, these changes might not hamper the subsequent in vitro embryo development.
    [Abstract] [Full Text] [Related] [New Search]