These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tetravalent manganese feroxyhyte: a novel nanoadsorbent equally selective for As(III) and As(V) removal from drinking water.
    Author: Tresintsi S, Simeonidis K, Estradé S, Martinez-Boubeta C, Vourlias G, Pinakidou F, Katsikini M, Paloura EC, Stavropoulos G, Mitrakas M.
    Journal: Environ Sci Technol; 2013 Sep 03; 47(17):9699-705. PubMed ID: 23888913.
    Abstract:
    The development of a single-phase Fe/Mn oxy-hydroxide (δ-Fe0.76Mn0.24OOH), highly efficient at adsorbing both As(III) and As(V), is reported. Its synthesis involves the coprecipitation of FeSO4 and KMnO4 in a kilogram-scale continuous process, in acidic and strongly oxidizing environments. The produced material was identified as a manganese feroxyhyte in which tetravalent manganese is homogeneously distributed into the crystal unit, whereas a second-order hollow spherical morphology is favored. According to this structuration, the oxy-hydroxide maintains the high adsorption capacity for As(V) of a single Fe oxy-hydroxide combined with enhanced As(III) removal based on the oxidizing mediation of Mn(IV). Ion-exchange between arsenic species and sulfates as well as the strongly positive surface charge further facilitate arsenic adsorption. Batch adsorption tests performed in natural-like water indicate that Mn(IV)-feroxyhyte can remove 11.7 μg As(V)/mg and 6.7 μg As(III)/mg at equilibrium pH 7, before residual concentration overcomes the regulation limit of 10 μg As/L for drinking water. The improved efficiency of this material, its low cost, and the possibility for scaling-up its production to industry indicate the high practical impact and environmental importance of this novel adsorbent.
    [Abstract] [Full Text] [Related] [New Search]