These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PDMAEMA-grafted core-shell-corona particles for nonviral gene delivery and magnetic cell separation.
    Author: Majewski AP, Stahlschmidt U, Jérôme V, Freitag R, Müller AH, Schmalz H.
    Journal: Biomacromolecules; 2013 Sep 09; 14(9):3081-90. PubMed ID: 23889326.
    Abstract:
    Monodisperse, magnetic nanoparticles as vectors for gene delivery were successfully synthesized via the grafting-from approach. First, oleic acid stabilized maghemite nanoparticles (γ-Fe2O3) were encapsulated with silica utilizing a reverse microemulsion process with simultaneous functionalization with initiating sites for atom transfer radical polymerization (ATRP). Polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA) from the core-shell nanoparticles led to core-shell-corona hybrid nanoparticles (γ-Fe2O3@silica@PDMAEMA) with an average grafting density of 91 polymer chains of DP(n) = 540 (PDMAEMA540) per particle. The permanent attachment of the arms was verified by field-flow fractionation. The dual-responsive behavior (pH and temperature) was confirmed by dynamic light scattering (DLS) and turbidity measurements. The interaction of the hybrid nanoparticles with plasmid DNA at various N/P ratios (polymer nitrogen/DNA phosphorus) was investigated by DLS and zeta-potential measurements, indicating that for N/P ≥ 7.5 the complexes bear a positive net charge and do not undergo secondary aggregation. The hybrids were tested as transfection agents under standard conditions in CHO-K1 and L929 cells, revealing transfection efficiencies >50% and low cytotoxicity at N/P ratios of 10 and 15, respectively. Due to the magnetic properties of the hybrid gene vector, it is possible to collect most of the cells that have incorporated a sufficient amount of magnetic material by using a magnetic activated cell sorting system (MACS). Afterward, cells were further cultivated and displayed a transfection efficiency of ca. 60% together with a high viability.
    [Abstract] [Full Text] [Related] [New Search]