These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Direct view of hot carrier dynamics in graphene.
    Author: Johannsen JC, Ulstrup S, Cilento F, Crepaldi A, Zacchigna M, Cacho C, Turcu IC, Springate E, Fromm F, Raidel C, Seyller T, Parmigiani F, Grioni M, Hofmann P.
    Journal: Phys Rev Lett; 2013 Jul 12; 111(2):027403. PubMed ID: 23889442.
    Abstract:
    The ultrafast dynamics of excited carriers in graphene is closely linked to the Dirac spectrum and plays a central role for many electronic and optoelectronic applications. Harvesting energy from excited electron-hole pairs, for instance, is only possible if these pairs can be separated before they lose energy to vibrations, merely heating the lattice. Until now, the hot carrier dynamics in graphene could only be accessed indirectly. Here, we present a dynamical view on the Dirac cone by time- and angle-resolved photoemission spectroscopy. This allows us to show the quasi-instant thermalization of the electron gas to a temperature of ≈2000 K, to determine the time-resolved carrier density, and to disentangle the subsequent decay into excitations of optical phonons and acoustic phonons (directly and via supercollisions).
    [Abstract] [Full Text] [Related] [New Search]