These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: EphA4-dependent axon retraction and midline localization of Ephrin-B3 are disrupted in the spinal cord of mice lacking mDia1 and mDia3 in combination. Author: Toyoda Y, Shinohara R, Thumkeo D, Kamijo H, Nishimaru H, Hioki H, Kaneko T, Ishizaki T, Furuyashiki T, Narumiya S. Journal: Genes Cells; 2013 Oct; 18(10):873-85. PubMed ID: 23890216. Abstract: mDia is an actin nucleator and polymerization factor regulated by the small GTPase Rho and consists of three isoforms. Here, we found that mice lacking mDia1 and mDia3, two isoforms expressed in the brain, in combination (mDia-DKO mice) show impaired left-right limb coordination during locomotion and aberrant midline crossing of axons of corticospinal neurons and spinal cord interneurons. Given that mice lacking Ephrin-B3-EphA4 signaling show a similar impairment in locomotion, we examined whether mDia is involved in Ephrin-B3-EphA4 signaling for axon repulsion. In primary cultured neurons, mDia deficiency impairs growth cone collapse and axon retraction induced by chemo-repellants including EphA ligands. In mDia-DKO mice, the Ephrin-B3-expressing midline structure in the spinal cord is disrupted, and axons aberrantly cross the spinal cord midline preferentially through the region devoid of Ephrin-B3. Therefore, mDia plays multiple roles in the proper formation of the neural network in vivo.[Abstract] [Full Text] [Related] [New Search]