These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preparation and characterization of N-TiO2 photocatalyst with high crystallinity and enhanced photocatalytic inactivation of bacteria. Author: Yu B, Lau WM, Yang J. Journal: Nanotechnology; 2013 Aug 23; 24(33):335705. PubMed ID: 23892455. Abstract: This study reports the synthesis, characterization and environmental applications of nitrogen doped TiO2 photocatalyst in the form of powder and film. N-TiO2 photocatalysts were synthesized via the hydrolysis of titanium tetraisopropoxide using urea as the nitrogen source. The crystalline structure, particle size and specific surface area of the resultant N-TiO2 nanoparticles were investigated by x-ray powder diffraction and the Brunauer-Emmett-Teller method. The results showed that a mixture of anatase and brookite phases was formed at pH 1 after annealing the powder at 450 ° C for 4 h, in contrast to a pure anatase phase at pH 3. UV-vis spectral characterization showed that the absorption region of the as-prepared N-TiO2 was extended to the visible light region. Stable sols could be achieved by controlling the molar ratio of water-to-titanium precursor and pH of the sols. During the photocatalytic test, in comparison to the standard commercial photocatalyst Evonik-Degussa P25 and home-made bare TiO2 nanoparticles, the N-TiO2 particles exhibited enhanced photocatalytic performance for degradation of methylene blue (MB) dye. The visible light induced photocatalytic inactivation of the obtained nanopowders and nanofilms on bacteria (Escherichia coli) was evaluated. The N-TiO2 nanomaterials showed higher bactericidal activity under visible light irradiation.[Abstract] [Full Text] [Related] [New Search]