These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DNA-mediated wirelike clusters of silver nanoparticles: an ultrasensitive SERS substrate. Author: Majumdar D, Singha A, Mondal PK, Kundu S. Journal: ACS Appl Mater Interfaces; 2013 Aug 28; 5(16):7798-807. PubMed ID: 23895297. Abstract: Stable metal nanoclusters (NCs) with uniform interior nanogaps reproducibly offer a highly robust substrate for surface-enhanced Raman scattering (SERS) because of the presence of abundant hot spots on their surface. The synthesis of such an SERS substrate by a simple route is a challenging task. Here, we have synthesized a highly stable wirelike cluster of silver nanoparticles (Ag-NPs) with an interparticle gap of ~1.7 ± 0.2 nm using deoxyribonucleic acid (DNA) as the template by exploiting an easy and inexpensive chemical route. The red shift in the surface plasmon resonance (SPR) band of Ag-NCs compared to SPR of a single Ag-NP confirms the strong interplasmonic interaction. Methylene Blue (MB) is used as a representative Raman probe to study the SERS effect of the NCs. The SERS measurements reveal that uniform, reproducible, and strong Raman signals were observed up to the single-molecule level. The intensity of the Raman signal is not highly dependent on the polarization of the excitation laser. The DNA-based Ag-NCs as a substrate show better isotropic behavior for their SERS intensity compared to the dimer, as confirmed from both the experimental and theoretical simulation results. We believe that in the future the DNA-based Ag-NCs might be useful as a potential SERS substrate for ultrasensitive trace detection, biomolecular assays, NP-based photothermal therapeutics, and a few other technologically important fields.[Abstract] [Full Text] [Related] [New Search]