These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficient selection of glycoprotein-binding DNA aptamers via boronate affinity monolithic capillary.
    Author: Nie H, Chen Y, Lü C, Liu Z.
    Journal: Anal Chem; 2013 Sep 03; 85(17):8277-83. PubMed ID: 23895515.
    Abstract:
    Systematic evolution of ligands by exponential enrichment (SELEX) is the workhorse method for selecting aptamers that are capable of binding target molecules from a random oligonucleic acid library. However, conventional SELEX methods are associated with apparent drawbacks including labor-intensive, time-consuming, large reagent consumption and strong nonspecific binding with separation media. Herein, we report a boronate affinity monolithic capillary-based SELEX approach for rapid selection of high-specificity glycoprotein-binding DNA aptamers. Boronate affinity monolithic capillary is an advanced functional material appeared in recent years, which allows for facile capture/release of glycoproteins in a pH-switchable fashion. By using boronate affinity monolithic capillary as a platform for target immobilization and aptamer isolation, the proposed SELEX method allowed for efficient selection of glycoprotein-binding aptamers by 6 rounds and the dissociation constants were at 10(-8) M level. Because of the employment of boronate affinity monolithic capillary, the new SELEX approach overcame the above-mentioned drawbacks and provided several significant advantages, including rapid selection speed (only 2 days were needed), high specificity toward the target molecules, and minute reagent consumption.
    [Abstract] [Full Text] [Related] [New Search]