These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitrogen dioxide and ultrafine particles dominate the biological effects of inhaled diesel exhaust treated by a catalyzed diesel particulate filter.
    Author: Karthikeyan S, Thomson EM, Kumarathasan P, Guénette J, Rosenblatt D, Chan T, Rideout G, Vincent R.
    Journal: Toxicol Sci; 2013 Oct; 135(2):437-50. PubMed ID: 23897985.
    Abstract:
    We studied the impact of a catalyzed diesel particulate filter (DPF) on the toxicity of diesel exhaust. Rats inhaled exhaust from a Cummins ISM heavy-duty diesel engine, with and without DPF after-treatment, or HEPA-filtered air for 4h, on 1 day (single exposure) and 3 days (repeated exposures). Biological effects were assessed after 2h (single exposure) and 20h (single and repeated exposures) recovery in clean air. Concentrations of pollutants were (1) untreated exhaust (-DPF), nitric oxide (NO), 43 ppm; nitrogen dioxide (NO2), 4 ppm; carbon monoxide (CO), 6 ppm; hydrocarbons, 11 ppm; particles, 3.2×10(5)/cm(3), 60-70nm mode, 269 μg/m(3); (2) treated exhaust (+DPF), NO, 20 ppm; NO2, 16 ppm; CO, 1 ppm; hydrocarbons, 3 ppm; and particles, 4.4×10(5)/cm(3), 7-8nm mode, 2 μg/m(3). Single exposures to -DPF exhaust resulted in increased neutrophils, total protein and the cytokines, growth-related oncogene/keratinocyte chemoattractant, macrophage inflammatory protein-1α, and monocyte chemoattractant protein-1 in lung lavage fluid, as well as increased gene expression of interleukin-6, prostaglandin-endoperoxide synthase 2, metallothionein 2A, tumor necrosis factor-α, inducible nitric oxide synthase, glutathione S-transferase A1, heme oxygenase-1, superoxide dismutase 2, endothelin-1 (ET-1), and endothelin-converting enzyme-1 in the lung, and ET- 1 in the heart. Ratio of bigET-1 to ET-1 peptide increased in plasma in conjunction with a decrease in endothelial nitric oxide synthase gene expression in the lungs after exposure to diesel exhaust, suggesting endothelial dysfunction. Rather than reducing toxicity, +DPF exhaust resulted in heightened injury and inflammation, consistent with the 4-fold increase in NO2 concentration. The ratio of bigET-1 to ET-1 was similarly elevated after -DPF and +DPF exhaust exposures. Endothelial dysfunction, thus, appeared related to particle number deposited, rather than particle mass or NO2 concentration. The potential benefits of particulate matter reduction using a catalyzed DPF may be confounded by increase in NO2 emission and release of reactive ultrafine particles.
    [Abstract] [Full Text] [Related] [New Search]