These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Atypical developmental patterns of brain chemistry in children with autism spectrum disorder.
    Author: Corrigan NM, Shaw DW, Estes AM, Richards TL, Munson J, Friedman SD, Dawson G, Artru AA, Dager SR.
    Journal: JAMA Psychiatry; 2013 Sep; 70(9):964-74. PubMed ID: 23903694.
    Abstract:
    IMPORTANCE: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with symptoms emerging during early childhood. The pathophysiology underlying the disorder remains incompletely understood. OBJECTIVE: To examine cross-sectional and longitudinal patterns of brain chemical concentrations in children with ASD or idiopathic developmental delay (DD) from 3 different age points, beginning early in the clinical course. DESIGN: Proton magnetic resonance spectroscopic imaging data were acquired longitudinally for children with ASD or DD, and primarily cross-sectionally for children with typical development (TD), at 3 to 4, 6 to 7, and 9 to 10 years of age. SETTING: Recruitment, diagnostic assessments, and magnetic resonance imaging were performed at the University of Washington in Seattle. PARTICIPANTS: Seventy-three children (45 with ASD, 14 with DD, and 14 with TD) at 3 to 4 years of age; 69 children (35 with ASD, 14 with DD, and 20 with TD) at 6 to 7 years of age; and 77 children (29 with ASD, 15 with DD, and 33 with TD) at 9 to 10 years of age. MAIN OUTCOMES AND MEASURES: Concentrations of N-acetylaspartate (NAA), choline (Cho), creatine (Cr), myo-inositol (mI), and glutamine plus glutamate (Glx) in cerebral gray matter (GM) and white matter (WM) at 3 to 4, 6 to 7, and 9 to 10 years of age, and calculation of rates of change of these chemicals between 3 and 10 years of age. RESULTS: At 3 to 4 years of age, the ASD group exhibited lower NAA, Cho, and Cr concentrations than did the TD group in both GM and WM, alterations that largely were not observed at 9 to 10 years of age. The DD group exhibited reduced GM and WM NAA concentrations at 3 to 4 years of age; GM NAA concentrations remained reduced at 9 to 10 years of age compared with the TD group. There were distinct differences between the ASD and DD groups in the rates of GM NAA, Cho, and Cr changes between 3 and 10 years of age. CONCLUSIONS AND RELEVANCE: The GM chemical changes between 3 and 10 years of age differentiated the children with ASD from those with DD. Most notably, a dynamic reversal of GM NAA reductions was observed in the children with ASD. By contrast, persistent GM NAA reductions in the children with DD suggest a different, more static, underlying developmental process.
    [Abstract] [Full Text] [Related] [New Search]