These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The role of hyaluronic acid precursor concentrations in molecular weight control in Streptococcus zooepidemicus. Author: Chen WY, Marcellin E, Steen JA, Nielsen LK. Journal: Mol Biotechnol; 2014 Feb; 56(2):147-56. PubMed ID: 23903961. Abstract: The biosynthetic pathway responsible for the production of hyaluronic acid (HA) has been thoroughly studied; however, many aspects remain elusive regarding the mechanisms that control molecular weight (MW). Previously, we demonstrated a positive correlation between MW and the concentration of the HA precursor sugar UDP-N acetylglucosamine (UDP-GlcNAc). To further investigate the role of UDP-GlcNAc in MW control, we increased the intracellular concentration of this monomer using both feeding strategies and genetic engineering approaches. Feeding cells glucosamine dramatically increased intracellular levels of UDP-GlcNAc, but unexpectedly, produced HA of a lower MW. This was subsequently attributed to an equally dramatic decrease in the level of the other HA precursor sugar UDP-glucuronic acid (UDP-GlcUA). Feeding cells a mixture of glucose and GlcNAc addressed this imbalance of precursor sugars, leading to an increase in both UDP-GlcNAc and UDP-GlcUA; however, no significant increase in MW was observed. Despite the increase in UDP-sugars, RNA sequencing identified no increase in the expression of the genes involved in production of HA. Returning to genetic engineering approaches to examine UDP-GlcNAc and MW, genes known to contribute to the production of UDP-GlcNAc were over-expressed, both individually and together. Using this approach, UDP-GlcNAc and MW increased. At lower levels of UDP-GlcNAc, the positive correlation between UDP-GlcNAc levels and MW was maintained, however this relationship stalled at higher concentrations of UDP-GlcNAc. Taken together, these results suggest that while optimising HA precursor levels using feeding or genetic engineering approaches can improve HA MW, there is a point at which excess availability of precursors is no longer advantageous. Once precursor concentrations are addressed, it would seem that other uncharacterised factor(s) (e.g. rate of HA synthesis) also contribute to HA MW control.[Abstract] [Full Text] [Related] [New Search]