These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electron-hole transfer in G-quadruplexes with different tetrad stacking geometries: a combined QM and MD study. Author: Lech CJ, Phan AT, Michel-Beyerle ME, Voityuk AA. Journal: J Phys Chem B; 2013 Aug 29; 117(34):9851-6. PubMed ID: 23906279. Abstract: G-quadruplex nucleic acids represent a unique avenue for the building of electrically conductive wires. These four-stranded structures are formed through the stacking of multiple planar guanine assemblies termed G-tetrads. The diverse folding patterns of G-quadruplexes allow for several geometries to be adopted by stacked guanine bases within the core and at the dimeric interface of these structures. It is currently not clear how different G-tetrad stacking arrangements affect electron hole mobility through a G-quadruplex wire. Using a combined quantum mechanics and molecular dynamics approach, we demonstrate that the electron-hole transfer rates within the G-tetrad stacks vary greatly for different stacking geometries. We identify a distinguished structure that allows for strong electronic coupling and thus enhanced molecular electric conductance. We also demonstrate the importance of sampling a large number of geometries when considering the bulk properties of such systems. Hole hopping within single G-tetrads is slower by at least two orders of magnitude than between stacked guanines; therefore, hole jumping within individual tetrads should not affect the hole mobility in G-quadruplexes. The results of this study suggest engineering G-tetrads with continuous 5/6-ring stacking from an assembly of single guanosine analogs or through modification of the backbone in G-rich DNA sequences.[Abstract] [Full Text] [Related] [New Search]