These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of metabolic blockade on the regulation of intracellular calcium in dissociated mouse sensory neurones.
    Author: Duchen MR, Valdeolmillos M, O'Neill SC, Eisner DA.
    Journal: J Physiol; 1990 May; 424():411-26. PubMed ID: 2391656.
    Abstract:
    1. Impaired intracellular Ca2+ concentration ([Ca2+]i) regulation may underlie alterations in neuronal function during hypoxia or hypoglycaemia and may initiate cell damage. We have used the Ca2(+)-sensitive fluorophore, Fura-2, to study the regulation of [Ca2+]i in neurones isolated from mouse dorsal root ganglia. Mean resting [Ca2+]i was 163 +/- 11 nM (mean +/- S.E.M., n = 38). 2. Depolarization by exposure to 20 or 30 mM-K+ caused a rapid Co2(+)- and Cd2(+)-sensitive rise in [Ca2+]i, which subsequently declined with a time course usually fitted by the sum of two exponential functions. 3. Interference with mitochondrial function (by CN- or FCPP) or with glycolysis (by glucose removal) all raised [Ca2+]i by up to 220%. Addition of FCCP in the presence of CN- further increased [Ca2+]i. The response to CN- was still seen in the absence of extracellular Ca2+, although it attenuated rapidly, indicating release from an intracellular store. 4. Either CN- or glucose removal increased the rise in [Ca2+]i induced by K+ 2- to 3-fold and slowed recovery, suggesting interference with sequestration or extrusion of [Ca2+]i. 5. Resting [Ca2+]i rose when external Na+ was replaced by Li+ or N-methyl-D-glucamine, demonstrating the presence of a Na(+)-Ca2+ exchange process. However, Na+ replacement had only a slight effect on the handling of a Ca2+ load. 6. We conclude that (i) Ca2+ is released into the cytoplasm from intracellular organelles when energy supplies are reduced: (ii) that the extrusion or sequestration of Ca2+ entering the cell during electrical activity is rapidly impaired by interference with mitochondrial metabolism: and (iii) Na(+)-Ca2+ exchange makes only a small contribution to intracellular Ca2+ homeostasis. 7. [Ca2+]i would thus be expected to rise in vivo during hypoxia or hypoglycaemia and may initiate alterations in neuronal function. However, if a rise in Ca2+ is an important cause of cell damage in cerebral hypoxaemia, the combination of excitation and hypoxia will lead to the largest increases in [Ca2+]i, while hypoxia alone appears to cause only a small increase in [Ca2+]i in quiescent cells.
    [Abstract] [Full Text] [Related] [New Search]