These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Primordium of an artificial Bruch's membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Author: Warnke PH, Alamein M, Skabo S, Stephens S, Bourke R, Heiner P, Liu Q. Journal: Acta Biomater; 2013 Dec; 9(12):9414-22. PubMed ID: 23917149. Abstract: Transplanted retinal pigment epithelium (RPE) cells hold promise for treatment of age-related macular degeneration (AMD) and Stargardt disease (SD), but it is conceivable that the degenerated host Bruch's membrane (BM) as a natural substrate for RPE might not optimally support transplanted cell survival with correct cellular organization. We fabricated novel ultrathin three-dimensional (3-D) nanofibrous membranes from collagen type I and poly(lactic-co-glycolic acid) (PLGA) by an advanced clinical-grade needle-free electrospinning process. The nanofibrillar 3-D networks closely mimicked the fibrillar architecture of the native inner collagenous layer of human BM. Human RPE cells grown on our nanofibrous membranes bore a striking resemblance to native human RPE. They exhibited a correctly orientated monolayer with a polygonal cell shape and abundant sheet-like microvilli on their apical surfaces. RPE cells built tight junctions and expressed RPE65 protein. Flat 2-D PLGA film and cover glass as controls delivered inferior RPE layers. Our nanofibrous membranes may imitate the natural BM to such extent that they allow for the engineering of an in vivo-like human RPE monolayer that maintains the natural biofunctional characteristics. Such ultrathin membranes may provide a promising vehicle for a functional RPE cell monolayer implantation in the subretinal space in patients with AMD or SD.[Abstract] [Full Text] [Related] [New Search]