These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ti2448 pedicle screw system augmentation for posterior lumbar interbody fusion. Author: Wang Z, Fu S, Wu ZX, Zhang Y, Lei W. Journal: Spine (Phila Pa 1976); 2013 Nov 01; 38(23):2008-15. PubMed ID: 23921332. Abstract: STUDY DESIGN: A finite element analysis was used. OBJECTIVE: To evaluate the feasibility of using the Ti-24Nb-4Zr-7.9Sn (Ti2448) pedicle screw system to augment single-level posterior lumbar interbody fusion (PLIF). SUMMARY OF BACKGROUND DATA: The Ti-6Al-4V pedicle screw system increases the risk of adjacent disc degeneration and stress-shielding effect due to enormous rigidity. A titanium alloy with much lower elastic modulus, Ti2448, may help to resolve the complications. METHODS: A finite element model of intact L3-S1 was established and then validated. Single-level PLIF at L4-L5 with or without a supplementary titanium-alloy pedicle screw system was simulated. A pure moment of 7.6 Nm and a 400 N preload was applied to the finite element model of PLIF, PLIF with the Ti-6Al-4V screw system, and PLIF with the Ti2448 screw system in flexion, extension, axial rotation, and lateral bending. RESULTS: The axial displacement at the fusion level decreased to 64%, 72%, 84%, and 92% of screw-free status in flexion, extension, axial rotation, and lateral bending, respectively, after augmentation of the Ti2448 screw system, which was 1% to 3% lower than the performance of the Ti-6Al-4V system. The angular displacement at the fusion level with the Ti2448 system was similar to that of the Ti-6Al-4V system, only 2% lower in flexion. Compared with the Ti-6Al-4V system, the Ti2448 system suppressed the increase of intradiscal pressures at the upper adjacent disc in all bending directions, but only in extension and axial rotation at the lower adjacent disc; the maximum stress experienced by cages and screws was higher in all bending directions when augmented with the Ti2448 system. CONCLUSION: Using the Ti2448 screw system is suggested for augmenting single-level PLIF because it induces less disc intradiscal pressure at adjacent levels and the stress-shielding effect at implant-bone surface with stabilization performance compared with the Ti-6Al-4V screw system.[Abstract] [Full Text] [Related] [New Search]