These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thalamic volume and related visual recognition are associated with freezing of gait in non-demented patients with Parkinson's disease.
    Author: Sunwoo MK, Cho KH, Hong JY, Lee JE, Sohn YH, Lee PH.
    Journal: Parkinsonism Relat Disord; 2013 Dec; 19(12):1106-9. PubMed ID: 23938134.
    Abstract:
    BACKGROUND: The pathophysiology of freezing of gait (FOG) in non-demented Parkinson's disease (PD) patients remains poorly understood. Recent studies have suggested that neurochemical alterations in the cholinergic systems play a role in the development of FOG. Here, we evaluated the association between subcortical cholinergic structures and FOG in patients with non-demented PD. METHODS: We recruited 46 non-demented patients with PD, categorized into PD with (n = 16) and without FOG (n = 30) groups. We performed neuropsychological test, region-of-interest-based volumetric analysis of the substantia innominata (SI) and automatic analysis of subcortical brain structures using a computerized segmentation procedure. RESULTS: The comprehensive neuropsychological assessment showed that PD patients with FOG had lower cognitive performance in the frontal executive and visual-related functions compared with those without freezing of gait. The normalized SI volume did not differ significantly between the two groups (1.65 ± 0.18 vs. 1.68 ± 0.31). The automatic analysis of subcortical structures revealed that the thalamic volumes were significantly reduced in PD patients with FOG compared with those without FOG after adjusting for age, sex, disease duration, the Unified PD Rating Scale scores and total intracranial volume (left: 6.71 vs. 7.16 cm3, p = 0.029, right: 6.47 vs. 6.91 cm3, p = 0.026). Multiple linear regression analysis revealed that thalamic volume showed significant positive correlations with visual recognition memory (left: β = 0.441, p = 0.037, right: β = 0.498, p = 0.04). CONCLUSIONS: These data suggest that thalamic volume and related visual recognition, rather than the cortical cholinergic system arising from the SI, may be a major contributor to the development of freezing of gait in non-demented patients with PD.
    [Abstract] [Full Text] [Related] [New Search]