These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model.
    Author: Hokmabadi MP, Wilbert DS, Kung P, Kim SM.
    Journal: Opt Express; 2013 Jul 15; 21(14):16455-65. PubMed ID: 23938496.
    Abstract:
    Metamaterial terahertz absorbers composed of a frequency selective layer followed by a spacer and a metallic backplane have recently attracted great attention as a device to detect terahertz radiation. In this work, we present a quasistatic dynamic circuit model that can decently describe operational principle of metamaterial terahertz absorbers based on interference theory of reflected waves. The model comprises two series LC resonance components, one for resonance in frequency selective surface (FSS) and another for resonance inside the spacer. Absorption frequency is dominantly determined by the LC of FSS while the spacer LC changes slightly the magnitude and frequency of absorption. This model fits perfectly for both simulated and experimental data. By using this model, we study our designed absorber and we analyze the effect of changing in spacer thickness and metal conductivity on absorption spectrum.
    [Abstract] [Full Text] [Related] [New Search]